We consider the convex quadratic linearly constrained problem
with bounded variables and with huge and dense Hessian matrix that arises
in many applications such as the training problem of bias support vector machines.
We propose a decomposition algorithmic scheme suitable to parallel...
Nonlinear Optimization
-
-
In this paper we study new preconditioners to be used within the nonlinear conjugate gradient (NCG) method, for large scale unconstrained optimization. The rationale behind our proposal draws inspiration from quasi-Newton updates, and its aim is to possibly approximate in some sense the inverse of...
-
-
-
-
-
-
This paper includes a twofold result for the Nonlinear Conjugate Gradient (NCG) method, in large scale unconstrained optimization. First we consider a theoretical analysis, where preconditioning is embedded in a strong convergence framework of an NCG method from the literature. Mild conditions to...
-
-