Home » Publication » 26021

Dettaglio pubblicazione

2022, FRONTIERS IN HUMAN NEUROSCIENCE, Pages - (volume: 16)

Usability of a Hybrid System Combining P300-Based Brain-Computer Interface and Commercial Assistive Technologies to Enhance Communication in People With Multiple Sclerosis (01a Articolo in rivista)

Riccio Angela, Schettini Francesca, Galiotta Valentina, Giraldi Enrico, Grasso Maria Grazia, Cincotti Febo, Mattia Donatella

Brain-computer interface (BCI) can provide people with motor disabilities with an alternative channel to access assistive technology (AT) software for communication and environmental interaction. Multiple sclerosis (MS) is a chronic disease of the central nervous system that mostly starts in young adulthood and often leads to a long-term disability, possibly exacerbated by the presence of fatigue. Patients with MS have been rarely considered as potential BCI end-users. In this pilot study, we evaluated the usability of a hybrid BCI (h-BCI) system that enables both a P300-based BCI and conventional input devices (i.e., muscular dependent) to access mainstream applications through the widely used AT software for communication "Grid 3." The evaluation was performed according to the principles of the user-centered design (UCD) with the aim of providing patients with MS with an alternative control channel (i.e., BCI), potentially less sensitive to fatigue. A total of 13 patients with MS were enrolled. In session I, participants were presented with a widely validated P300-based BCI (P3-speller); in session II, they had to operate Grid 3 to access three mainstream applications with (1) an AT conventional input device and (2) the h-BCI. Eight patients completed the protocol. Five out of eight patients with MS were successfully able to access the Grid 3 via the BCI, with a mean online accuracy of 83.3% (+/- 14.6). Effectiveness (online accuracy), satisfaction, and workload were comparable between the conventional AT inputs and the BCI channel in controlling the Grid 3. As expected, the efficiency (time for correct selection) resulted to be significantly lower for the BCI with respect to the AT conventional channels (Z = 0.2, p < 0.05). Although cautious due to the limited sample size, these preliminary findings indicated that the BCI control channel did not have a detrimental effect with respect to conventional AT channels on the ability to operate an AT software (Grid 3). Therefore, we inferred that the usability of the two access modalities was comparable. The integration of BCI with commercial AT input devices to access a widely used AT software represents an important step toward the introduction of BCIs into the AT centers' daily practice.
keywords
© Università degli Studi di Roma "La Sapienza" - Piazzale Aldo Moro 5, 00185 Roma